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Overview 
This report summarizes a set of research studies supported by a Basic Research Challenge to 
examine how implicit learning research can be used to accelerate the development of expert 
intuition in training (Implicit Intuition Basic Research Challenge; I2BRC).  The foundational basic 
science approach to this work is that implicit learning (Reber, 2013) reflects a separate type of 
learning and memory which accumulates through experience outside of awareness and 
influences behavior through intuition.  From this perspective, expert intuition reflects years of 
implicit learning in the field which leads to nonconscious knowledge structures that support 
accurate intuitions, hunches and feelings that contribute to highly expert performance.  Implicit 
knowledge is not available to report making it impossible to teach in the classroom and often 
quite difficult to extract from experts who use it successfully.  Phenomena of implicit learning 
are often studied in laboratory conditions with novel, artificial tasks.  The main goal of the 
research project described here is to examine how to take capitalize on these laboratory 
paradigms to accelerate the development of operationally relevant intuitive decision making in 
practical contexts. 

The first set of projects began as part of a multi-site research initiative to examine the 
Neurocognitive Foundations of Implicit Intuition.  Three neuroimaging studies are described 
that were carried out by researchers at Northwestern University.  The main findings are 
summarized together with a list of scientific presentations, publications and graduate student 
training milestones.  In 2016, the aims were adjusted to focus on the development of a testbed 
for assessing implicit intuition and the development of a novel paradigm for quantifying 
intuitive decision making, Terrain Categorization.  Research supported in this line of work 
adapted previously studied paradigms for implicit learning in visual categorization to develop a 
new research protocol inspired by Land Navigation training.  The set of studies examining that 
idea are described here as part of a two-year effort, Enhancing Intuition Through Implicit 
Learning (Jan 2016 – Dec 2017, NCE through Dec 2018).  Across studies, these research projects 
identified methods for applying laboratory studies of implicit learning to the development of 
intuitive expertise but consistently identified challenges in accelerating the development of 
intuition to a level of robust detectability within a 1-2 hour experimental session.  As a general 
recommendation, implicit learning techniques can likely be applied to accelerating the 
development of intuition across longer training protocols.  Establishing this hypothesis will be 
best done within research approaches that are closely tied to tasks based on operationally 
relevant training rather than laboratory paradigms designed around novel, arbitrary, carefully 
controlled stimuli. 

Research supported by the Neurocognitive Foundation part of the project has led to substantial 
scientific output, including 6 manuscripts published or in preparation and 14 conference 
presentations, 1 completed Doctoral Dissertation (Hectmann), 1 completed Masters Thesis 
(Reuveni, Ph.D. thesis underway) to date.  Data analysis and preparation of reports of findings 
are still underway and we expect at least 3 more manuscripts to be published in peer-reviewed 
journals. 
 
  



Final Summary Report  June 2019 

3 
 

1. Neurocognitive Foundations of Implicit Intuition 
 
Three projects sought to examine the neurocognitive foundation of intuition and intuitive 
decision making using theoretical ideas and paradigms used laboratory studies to examine the 
operation of implicit (nonconscious) learning and memory.  Each of these projects was based on 
using functional magnetic resonance imaging (fMRI) to characterize the neurocognitive 
foundations of these basic processes. 
 
1.1 Insight Problem Solving 
When solving a complex problem by insight, the subjective experience of the solver is often 
that of being stuck without obvious progress and then a sudden “Aha!” moment where the 
answer springs to mind unexpectedly.  The lack of awareness of the impending solution 
indicates that implicit processing is occurring outside awareness that is leading to the discovery 
of the solution.  This process has been extensively studied (Kounios & Beeman 2015) to 
understand how this process influences complex decision making and creativity.  In our prior 
research using neuroimaging, we identified the importance of the right temporal lobe in the 
neural activity that precedes the moment of insight (Jung-Beeman et al., 2004).  In the current 
study, we sought to identify factors that would contribute to enhancing the probability of a 
successful insight event. 

Laboratory studies have shown that an effective paradigm for creating moments of insight is 
the Compound Remote Associates Task where participants attempt to find a word that links 
three seemingly unrelated words (e.g., Pine-Sauce-Crab; solution is ‘apple’).  While performing 
this task while neuroimaging data were collected (fMRI), participants were primed before each 
problem with a task directing attention either globally or locally.  In Figure 1.1.1., neural regions 
in the medial prefrontal cortex were found to be activated by both directing attention globally 
and neural activity immediately preceding 
insight. 

This result suggests that manipulating the 
focus of attention globally might increase the 
tendency for an insight-solution event to 
occur.  Directing a problem-solver’s attention 
to the “forest instead of the trees” might 
increase the degree to which implicit and 
intuitive processes affect problem solving or 
decision-making. 

Testing this idea in a more operationally 
relevant task would require development of a 
decision-making testbed that blends the 
control of laboratory protocols with decisions 
more related to real-world contexts. 

 

Figure 1.1.  Overlapping regions in prefrontal 
cortex associated with global focus of spatial 
attention and solving problems by insight. 
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1.2 Implicit Recognition 
The second area of investigation into the neurocognitive foundations of implicit-intuitive 
decision-making was built on a phenomenon of “implicit recognition” described by Voss & 
Paller (2009).  In this paradigm, participants are exposed to novel abstract visual images but 
with attention directed away from the stimuli during a brief exposure.  As a consequence of this 
presentation method, participants can sometimes enter a state of high-accuracy guessing.  
When this occurs, participants report a subjective sense of no memory for the studied stimuli 
but when asked which of two they recognize as having seen before, are able to pick the correct 
image out at a rate much higher than chance.  This phenomenon reflects a common way in 
which implicit memory for prior experience is expressed (Reber 2013) and is used here as a 
model of intuition under the idea that the guesses made by participants reflect a similar 
process to an intuitive hunch. 

The paradigm used here attempted to create the high-accuracy guessing state using an 
approach of value directed recognition (VDR).  In this paradigm images are designated as high 
or low value for a future memory test.  Participants typically report directing attention to the 
high-value items over low-value items.  Later, the low-value items can exhibit this guessing 
effect, as seen in the left columns on Figure 1.2, Panel A.  When reporting no confidence in 
their answer, participants were still accurate 60% of the time (50% is chance). 

We sought to identify the neural correlates of this phenomenon with fMRI, however, within the 
scanning environment, we did not observe the high-accuracy guessing phenomenon.  This is 
one of the challenges of studying implicit and intuitive processes in the laboratory.  It can be 
hard to create moments of intuition on cue for study. The data obtained did bring some 
significant insight into basic memory processes, Figure 1.2, Panel B.   

 
 

Figure 1.2.  (A) Memory performance on a forced-choice recognition test (FC).  When pilot 
participants reported guessing the answer, they did better for ‘low-value’ items than high-value 
items. (B) Activity associated with successful memory in a subsequent memory test showing 
increased activity for successful memory in three networks: dorsal frontoparietal (cognitive control), 
ventral-lateral occipito-temporal (visual object processing) and parietal semantic cortical areas. 

A B 
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A manuscript (Cohen, Cheng, Paller & Reber, in press) has just been accepted for publication 
that focuses on increased neural activity within the reward regions of the brain during 
successful memory as well as neural activity with strategic control of memory.  Of note, the 
reward system activity does not appear to be selectively directed consciously, suggesting that 
feedback and reward are likely to play an important role in the creation and use of more 
intuitive modes of thought.  A second manuscript is also in preparation that examines 
interactions between accuracy and confidence in memory reflected in visual system neural 
activity. 

 

1.3 Modeling Implicit/Explicit Memory System Interactions 
The third neuroimaging approach to examining implicit intuition directly addressed the 
challenges of eliciting intuitive approaches using computational modeling methods to attempt 
to better characterize mental states during a complex learning process.  We had previously 
described a computational model, PINNACLE (Parallel Interaction Neural Networks Active 
during Category Learning) that provides a model of the interaction between implicit and explicit 
processes during learning (Nomura & Reber, 2012).  In the current approach, we further 
extended this modeling system to incorporate more a more sophisticated model of reward-
based processing and more complex conscious hypothesis testing mechanisms.  PINNACLE 2.0 
(Figure 1.3; Reuveni, unpublished Master’s thesis) was then used to fit the learning process 
during a laboratory paradigm in which participants were first encouraged to use a simple 
conscious rule, and then gradually learn that this rule was inaccurate and must be abandoned 
in favor of an implicitly learned rule.  The strategy use of participants was inferred through 

Figure 1.3.  The PINNACLE computational model of implicit and explicit parallel learning systems 
and their interactions during learning that leads to switching between strategies. 
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modeling with PINNACLE 2.0 yoked to the specific choice behavior of the participants to predict 
which strategy drove response choice on each trial.  

Extensive pilot testing demonstrated the difficulty of getting participants to go through the 
process of abandoning an initially successful rule in favor of a more intuitive approach.  One 
aspect of why this is challenging is likely that this is normally a process that occurs very 
gradually over the acquisition of expertise and we are attempting to move through this process 
within a single hour of practice.  To achieve this accelerated switch to more intuitive decision 
making, we used the PINNACLE 2.0 model as a kind of adaptive tutor to select stimuli so as to 
encourage more implicit knowledge during performance.  This led to a successful round of pilot 
testing (Figure 1.3.2, Panel A).  However, the same protocol implemented in the scanner, led to 
a surprising level of non-learning in participants, almost half never achieved better than chance 
performance. 

 

Analysis of the fMRI is underway and will likely still provide insights into neural activity 
associated with learning (and also non-learning in the face of corrective feedback on each trial).  
We hypothesize that participants who are not learning well are likely rapidly cycling between 
ineffective strategies.  We may be able to track this process with the PINNACLE 2.0 framework 
to identify critical aspects of the decision process to select for analysis. 
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Figure 1.4.  Categorization accuracy over the course of learning. (A) Pilot data (n=19) of 
learning guided by the PINNACLE tutor in the laboratory. (B) Data from participants 
obtained in the fMRI scanning environment in which many participants did not exhibit 
learning during the task. 
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1.4 Summary of Neuroimaging Studies 
The three sets of studies aimed to examine the neurocognitive foundations of implicit learning 
applied to intuitive decision making each produced significant contributions to the fields of 
implicit learning and insight problem solving.  The results of these studies have been reported 
at scientific conferences for Cognitive Neuroscience research and several manuscripts are in 
preparation and/or under review for publication.  A common set of limitations were identified 
across these research areas raising challenges for developing more direct applications to 
improved training methods to accelerate the development of intuitive decision making for 
more operationally relevant domains.  First, the tasks used were exclusively laboratory tasks for 
models of implicit (intuitive) learning and memory.  Second, even with these well-controlled 
tasks, it is difficult to reliably elicit robustly intuitive behavior within the first hour of learning in 
an experimental session.  Expert intuition is more commonly acquired over extended training in 
the field with many hours (hundreds or thousands) of experience.  Select implicit learning tasks 
can produce behavior for which performance exceeds what can be verbally reportable, but 
these tasks often have very specific, restricted properties.  Typically, key elements of the 
information to be learned have to be covertly embedded so that conscious, explicit decision 
making does not drive behavior.  In Section 2, we report a series of experiments in which we 
covertly embedded structural information in a novel categorization task designed to bear more 
surface similarity to operationally relevant decisions that might be encountered in Land 
Navigation training. 
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2 Enhancing Intuitive Decision Making through Implicit Learning 
This section reports on the results of a project following on the prior research examining the 
neurocognitive foundations of implicit learning as it contributes to intuitive decision making.  A 
new approach was developed to create a more operationally-relevant learning task in which 
the effects of implicit learning and intuitive decision making could be quantified (Smith et al. 
2017).  With an effective testbed for measuring the impact of implicit knowledge, it was 
expected that approaches for accelerating the development of intuition could be developed 
and tested. 

The new paradigm was developed based on existing laboratory tasks for category learning. The 
category learning research domain involves showing participants a number of novel stimuli that 
they must learn to correctly label as in one of a small number of possible categories (typically 
A/B or A/B/C).  This can be accomplished with no information provided to the participants 
about the category structure or correct answers and participants learn the categories based on 
feedback on each trial.  Early in learning, responses are based on guesses but as more trials are 
seen and completed, the prior answers and feedback about the correct answer allow 
participants to develop knowledge of the task structure. 

In most laboratory versions of the category learning paradigm (c.f., Nomura & Reber 2008), the 
stimuli to be learned are artificial and vary on a few arbitrary dimensions, e.g., sine wave 
gratings that vary in frequency (stripe thickness) and orientation (tilt).  These paradigms have 
been a powerful tool to study the basic science of learning and characterize the contributions of 
separate underlying implicit and explicit memory systems (Ashby et al. 1998; Nomura et al. 
2007).  In addition, this paradigm can be taken as a model of decision-making since the label 
selection response is effectively a decision about the category membership of a stimulus that 
has to be made on partial, incomplete information. 

Decisions to be made about the local terrain environment was the domain selected for the 
development of our model task.  Working with Charles River Analytics (PI: Dr. James Niehaus), a 
procedural terrain generator was developed within a simulation framework that varied on four 
specified dimensions: ground topology (hilliness), vegetation density, weather conditions and 
time of day.  The terrains generated this way provided a model of decision tasks in which a 
course of action to be taken depends on the environmental characteristics (e.g., patrolling, 
route selection, force placement).  To examine a learning process using these stimuli, we 
embedded a covert and arbitrary category structure on these stimuli that had to be discovered 
by participants.  The results of several studies examining learning of the Terrain Categorization 
task are reported here. 
 
General Methods 
For the Terrain Categorization task, the underlying terrains were procedurally generated 
according to a set of 4 environmental parameters that controlled: (1) the topographic structure 
(“hilliness”), (2) density of vegetation (trees and bushes), (3) weather conditions and (4) time of 
day.  Each of these parameters varied continuously across a range from zero to one with higher 
values being more hills, more vegetation, more weather (clouds, fog, rain) or later in the 
evening (noon to sunset).  Specific terrains were generated pseudo-randomly after specification 
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of values for these four parameters, meaning a very large number of different terrain stimuli 
could be created with this algorithm (Figure 2.1).   

 

 

 

 

 

 

 

 

 

 

 

 

The participants’ experience with a terrain was based on a video clip of simulation-based 
movement through the terrain from a first-person perspective.  The location of the point within 
the terrain for movement was chosen randomly and the movement was forward (an S-shaped 
curve to provide information about the terrain environment to the left and right was added for 
Exp 2).  The videos were 4 seconds long and were observed by the participants while they were 
trying to accomplish the learning goals of the task. 

Participants were told that they were in charge of delivering supplies during a mission on an 
alien planet. For this mission, a travel method needed to be chosen in order to deliver needed 
supplies to settlement building teams. In response to a 4s video clip, participants attempted to 
select the correct travel method for successful deliveries for that terrain environment.  The 
three choices were labeled simply as Alpha, Bravo, Charlie (A/B/C), and no information about 
how to identify the correct label from the terrain was provided.  The video clip was followed by 
a short response period for the participants to select their choice.  After selection, feedback 
(visual and auditory) was provided about the accuracy of their choice and the correct answer (if 
necessary). 

Over the course of the training session (typically 1 hour with 150-450 trials), participants 
attempted to learn the correct response for each video, which entailed building an 
understanding of the hidden category structure.  The correct answer for each terrain was 
determined using 3 hidden prototypes defined by specific values across the 4 parameters.  The 
closest prototype to the presented stimulus defined the correct answer for the trial.  The 
stimuli were generated to have a mathematically characterized structure determined by 
distance to the prototypes.  As is common in prototype-category learning experiments, the 
individual unique stimuli never had exactly the values of the prototypic member, but instead 
had each parameter slightly randomly adjusted (jittered) to maintain a target “distance” from 

Figure 2.1: Example of Category Bravo stimuli (left panel). Characteristics of Bravo include steep topology, 
time of day of late afternoon, and clear weather. Prototype values: 0.937, 0.347, 0.863, 0.224. Example of 
Category Charlie (right panel). Characteristics of Charlie include medium topology, time of day of early 
morning, and cloudy weather. Prototype values: 0.609, 0.446, 0.592, 0.567. 
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this central value in the perceptual 
stimulus space.  The stimuli for each of the 
three categories were effectively within a 
4d-hypershell around the prototypes.  This 
mathematical construction allows for 
varying the difficulty of the task by 
increasing the distance from each stimulus 
to the prototype (reducing within-
category difficulty) or changing the 
distance between the categories 
(increasing or reducing across-category 
difficulty). 

Following the task, a post-session 
interview was administered in order to 
assess the extent to which participants 
used explicit knowledge to successfully 
categorize the terrain videos. For several 
experiments (Experiments 1, 6, and 7), 
participants were asked a simple, open-
ended question: describe your experience 
completing the task. Interviews for the 
remaining experiments contained additional questions about the importance of visual features 
to their decision-making (Experiments 2-5), and how the importance of visual features varied 
across categories (Experiment 5).  

 
 
2.1 Experiment 1 
In a first experiment, we demonstrated that participants could successfully learn the novel 
category structure with stimuli based on the mathematical prototype structure but rendered as 
first-person perspective moving through the terrain environment. 
 
Participants. Eleven participants were recruited for this experiment recruited from the NU 
community and paid ($15/hr) for their participation.  All experimental protocols and procedures 
were reviewed and approved by the NU Institutional Review Board. 
 
Materials. For Experiment 1, the prototype values for the three categories were (in order of 
hilliness, vegetation, time of day and weather; [0-1]): Alpha (0.3, 0.4, 0.3, 0.3), Bravo (0.4, 0.1, 
0.7, 0.4), Charlie (0.1, 0.3, 0.5, 0.7).  The between-category distance was set to 0.5 and the 
within-category distance was set to 0.141.  Each video contained simulated movement 
characterized as a straight line forward through the environment. 
 
Procedure. Participants were provided with the ‘alien world’ cover story and instructed they 
would be learning from trial-and-error with feedback.  The experimental session included 150 

Figure 2.1: Schematic of prototype category 
stimulus organization within the 4 visual 
dimensions (3 shown: topology, vegetation, 
weather). Red center dots represent prototype 
values. Blue, yellow, and green dots represent 
exemplar values used to generate stimuli for 
each category. 
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trials of learning with feedback with self-terminated breaks every 50 trials.  Trials were pseudo-
randomized by block so that trials belonging to a particular category would not appear more 
than three times consecutively. After completing the task, participants were given a short, 
open-ended interview during which they were asked to describe their experience performing 
the task. Participants were also asked to report any categorization strategies as well as at what 
point during the task they began using these strategies. 
 
Results. Participants successfully learned the correct categories over the course of the session 
(Figure 2.3) with response accuracy reaching 81% correct (SD=21%), reliably better than chance 
(33%), t(10) = 7.44, p<0.001.  Final block performance was reliably higher than first block 
performance (M=56%, SD=11%), t(10)=3.67, p<.005.  However, the high level of initial 
performance in the first block suggested the possibility that participants were rapidly 
identifying a single feature to use for categorization.  In the post-session interviews, 
participants reported that the Charlie category was quite distinctive by the weather, which 
included rain (appearing only when the Weather dimension was at 0.6 or greater) that was 
noticed immediately and explicitly during learning. 
 
Discussion. Although successful learning was observed, the data did not rule out the possibility 
that participants only learned the simple association from Category Charlie to the presence of 
rain.  In Experiment 2, upgrades to the stimulus generation software allowed for improvements 
to the experimental protocol to attempt to identify parameters that would elicit gradual and 
even learning across categories typical of more implicit learning. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.3: Overall and category accuracy in Experiment 1.  150 total trials were used in this task. 
Percent correct was determined by measuring performance across blocks of 30 trials. Participants 
showed learning over the course of the task, but participants showed lower performance on Category 
Charlie compared to Alpha and Bravo. Overall performance was greater than chance (33%, represented 
by the dotted line) during the final block. 
 



Final Summary Report  June 2019 

12 
 

2.2 Experiment 2 
For Experiment 2, the implementation of the weather dimension was adjusted to make the 
changes in weather more gradual across the allowable values on this dimension (visible rain 
was removed).  In addition, upgrades to the stimulus generation software allowed for 
generation of more fine-grained parameter values (to several more significant digits) and 
greater control over the first-person camera trajectory.  
 
Participants. Nineteen participants were recruited from the NU community and paid $15/hr for 
participation. 
 
Materials. New videos were rendered with the upgraded software.  The prototype values for 
the three categories were (in order of hilliness, vegetation, time of day and weather; [0-1]): 
Alpha (0.124, 0.110, 0.148, 0.307), Bravo (0.377, 0.471, 0.079, 0.531), Charlie (0.580, 0.209, 
0.313, 0.239).  The same within-category variance structure as in Experiment 1 was used. The 
path of movement through the simulated environment was changed from a straight line to a 
backwards “S” in order to provide more opportunities to perceive visual features in the 
environment to the left and right of the viewpoint.  
 
Procedure. Based on the time participants took to complete the session in Experiment 1, the 
protocol in Experiment 2 was lengthened to 300 trials.  As in Experiment 1, the alien worlds 
cover story was used to explain the learning goals.  The post-session interview was substantially 
expanded to identify the explicit strategies used by the participants. After asking the 
participants to describe their experience completing the task, the experimenter posed the 
question, “Let’s say a good friend is coming in tomorrow to complete the same discrimination 
task you just completed and you want to give them a leg up. What would you tell them to 
ensure that they would be able to successfully discriminate between Alpha, Bravo, or Charlie?” 
In addition, participants were asked to report the importance of each of the four feature 
dimensions to their decision-making using 1-10 Likert scales. Finally, participants were then 
asked whether each feature corresponding to low, medium, or high values in each category. 
 
Results. Participants’ performance (Figure 2.4) increased reliably from the 38% correct 
(SD=9.6%) on the first block to 56% correct (SD=17%) on the final block, t(18) = 4.87, p < 0.001, 
indicating successful learning.  However, participants reported being able to explicitly identify 
the Bravo category again by the distinctive weather value.  Performance on the Bravo trials was 
significantly higher than the Alpha or Charlie trials (ts>2,15, ps<.05), raising concerns that 
participants had only learned that category (i.e., report Bravo if identified and guess otherwise). 
 
Discussion. Although participants again showed improved categorization accuracy with 
practice, discriminability remained uneven across all three categories due to the presence of 
salient cues for one category.  
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2.3 Experiment 3 
For Experiment 3, a new prototype category structure was created and new stimuli were 
generated with the intention of evenly balancing discriminability across the three categories. 
 
Participants. Twenty-four participants were recruited from the NU community and paid $15/hr 
for participation. 
 
Materials. The prototype values for the three categories were (in order of hilliness, vegetation, 
time of day and weather; [0-1]) were: Alpha (0.891, 0.887, 0.390, 0.582), Bravo (0.737, 0.912, 
0.701, 0.224), Charlie (0.476, 0.857, 0.290, 0.324). In addition, the within-category distance was 
also expanded from 0.140-0.141 to 0.200-0.201 in order to encourage implicit learning over the 
utilization of explicit rules. 
 
Procedure.  The experimental protocol was extended to 450 trials, which could still be 
completed within the one-hour session. The extended post-session interview was the same as 
in Experiment 2. However, naïve (i.e., blind to the experimental hypothesis) raters were 
employed to evaluate the interviews and provide quantitative assessments of the quality of the 
strategic information provided by the participants. The raters were asked to score the 
interviews in order to assess the use of rules, conjunction scores, and articulation scores. The 
‘articulation’ score reflected clear and articulate statements about how the dimensions related 
to the learned categories. After viewing the interview collected from each participant, the rater 

Figure 2.4: Overall and category accuracy in Experiment 2. 300 total trials were used in this task. Percent 
correct was determined by measuring performance across blocks of 30 trials. Participants showed 
learning over the course of the task, but participants showed greater performance on Category Bravo 
compared to Alpha and Charlie. Overall performance was greater than chance (33%, represented by the 
dotted line) during the final block. 
 



Final Summary Report  June 2019 

14 
 

would choose a number between 1 and 10 that reflected the ability of the subject to clearly 
articulate the rules that they used to complete the task. In addition, a ‘conjunctive’ score 
counted distinct, accurate statements about the role of each dimension for each category with 
a maximum score of 12 (3 categories, 4 dimensions). The ‘conjunctive’ score was averaged 
across both the open-ended portion of the interview and the question asking participants to 
give advice to a friend completing the task. Four naïve raters applied the scoring rubric to each 
participant’s interview data and the raters’ scoring was highly consistent (Intraclass Correlation 
Coefficient, ICC = .92 for conjunctive scores; ICC = .74 for articulation). 
 
Based on their interview responses, participants were grouped into three levels in order to 
determine the amount of explicit knowledge utilized during the task. A “Low” explicit 
knowledge group included participants who scored less than 5 on the articulation score or less 
than 3 on the conjunctive score. A “Moderate” explicit knowledge group scored less than 6 on 
the articulation score and less than 5 on the conjunctive score. The “High” explicit knowledge 
group scored greater than 6 on articulation score or greater than 5 on conjunction score. 
 
Results. Participants’ performance (Figure 2.5) again improved reliably across the training 
session, increasing from 39% (SD 9.1%) on the first block to 62% (SD 25%) on the final block, 
t(23) = 5.17, p < 0.001. Performance was broadly similar across the three categories, indicating 
that participants were not learning to rely on a single dimension to identify one of the 
categories.  However, as in previous experiments, performance on the first block was still 
significantly above chance, t(23) = 2.86, p < 0.01, and this rapid learning suggested the 
possibility of some reliable on quickly discovered explicit strategies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Overall and category accuracy in Experiment 3. 450 total trials were used in this task. 
Percent correct was determined by measuring performance across blocks of 30 trials. Participants 
showed learning over the course of the task. Participants showed similar levels of performance 
across all three categories. Overall performance was greater than chance (33%, represented by the 
dotted line) during the final block. 
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Participants belonging to the “High” explicit knowledge group showed better performance (M = 
62.49%, SD = 22.55%) than participants belonging to the “Low” group (M = 45.20%, SD = 
22.23%), indicating that explicit knowledge contributed at least somewhat to performance. 
Participants belonging to the “Moderate” group performed as well as the “High” explicit 
knowledge group (M = 66.76%, SD = 21.87%), suggesting that explicit knowledge did not solely 
account for performance. 

Discussion. In Experiment 3, successful gradual learning of all three categories was observed 
over the course of the task. Approximately a third of the participants in Experiment 3 exhibited 
a profile consistent with implicit learning in which high levels of decision accuracy occurred with 
low explicit knowledge. The following Experiments were conducted with the goal of increasing 
participants’ reliance on implicit learning by adding additional probabilistic cues to the correct 
answer to the stimuli. Specifically, unobtrusive auditory cues predictive of the correct decisions 
were added to some decision trials. We hypothesized that these cues would influence decision-
making by evoking a hunch about the correct answer when the cues were available. In this case, 
the impact of these hunches could be quantitatively measured (by increase in accuracy 
compared to when the cues were not available) as a model of learning intuitive decision-
making. 
 
2.4 Experiment 4 
Auditory information was added to the video clips and therefore provided to participants 
during learning.  The sound track included irrelevant sounds into which were embedded 
unobtrusive auditory cues predictive of the category structure.  The predictive cues were added 
probabilistically to a subset of trials. These auditory cues were presented in the form of distinct 
birdcalls (e.g., cardinal, blue jay, and eaglet calls), each occurring for the duration of stimulus 
presentation 
 
Participants. Twenty participants were recruited from the NU community and paid $15/hr for 
participation. 
 
Materials. New prototype values were generated for this experiment. The prototype values for 
the three categories were (in order of hilliness, vegetation, time of day and weather; [0-1]) 
were: Alpha (0.442, 0.783, 0.753, 0.288), Bravo (0.748, 0.410, 0.877, 0.241), Charlie (0.449, 
0.392, 0.683, 0.592). In addition, auditory cues in the form of three distinct birdcalls were 
embedded within 80% of total trials. Of these trials, 80% had auditory cues that were predictive 
of the categories. Overall, 64% of total trials contained predictive cues, 16% contained “False” 
cues, and 20% contained no auditory cues.  
 
Procedure. In addition to the categorization response, participants were instructed to attend to 
the auditory elements of the videos.  To motivate compliance, we embedded a ‘callsign’ in the 
auditory information on 10% of trials that participants were to listen for and make a separate 
response (press the keyboard space bar).  Categorization trials were reorganized into blocks 
containing 75 trials, with 25 trials of each category present in each block. As in previous 
experiments, trials were pseudo-randomized by block so that trials belonging to a particular 
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category would not appear more than three times consecutively. Short breaks continued to be 
provided after every 50 trials. The protocol again consisted of 450 total trials. The post-session 
interview was updated with a question added asking if and how participants used auditory 
features to make decisions during the task. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Results. Three participants were excluded for poor performance (< 75%) on the auditory ‘catch’ 
trials, suggesting lack of compliance with the task instructions.  Participants’ (n=17) 
performance (Figure 2.6) on the final block was 70% correct (SD 18%), significantly above 
chance, t(19) = 8.6, p < 0.001 and improved significantly  from the first block (M = 48.5%, SD = 
11%), t(16) = 7.69, p < 0.001. Participants appropriately responded to the auditory ‘catch’ trials, 
performing 94% correct (SD 6%) at identifying them, indicating they were attending to the 
auditory information.  However, participants did not show sensitivity to the auditory cues 
overall, F(2, 48) = 1.6, p=0.217, although there was a trend for higher accuracy on the trials with 
predictive cues present.  However, four participants reported awareness of the auditory cues’ 
relationship to the correct category and used this information to improve their task 
performance, accounting entirely for the trend. 
 
Discussion. Participants showed increased performance over the course of the task, learning all 
three categories at similar rates.  However, the auditory cues did not have a measureable 
impact on performance across the group.  For Experiment 5, the training protocol was extended 
for additional trials to provide more time for the implicit association between the auditory cue 
and the terrain category to strengthen. 

Figure 2.6: Overall and category accuracy in Experiment 4. 450 total trials were used in this task. 
Percent correct was determined by measuring performance across blocks of 75 trials. 
Participants showed learning over the course of the task. Participants showed similar levels of 
performance across all three categories. Overall performance was greater than chance (33%, 
represented by the dotted line) during the final block. 
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2.5 Experiment 5 
To provide additional time and training to build up implicit learning and the use of intuition in 
the category learning task, the protocol was doubled in length to two hour-long sessions 
occurring over two days.  In addition, a new quantitative approach was developed to examine 
the relationship between the participants’ verbal reports of strategy use and task performance.  
A strategy inference algorithm was devised to identify when participants’ response choices 
were consistent or inconsistent with their explicit reports of strategy use.  From this we could 
identify a subset of trials where the participants made categorization choices that did not 
appear to be based on explicit strategy and are more likely to be influence by implicit intuition. 
 
Participants. Thirty-three participants were recruited from the NU community and paid $15/hr 
for participation. 
 
Materials. Additional stimuli were generated (450, bringing the total to 900) based on the same 
prototype values used in Experiment 4.  The auditory information was kept the same (overlaid 
on the new videos). 
 
Procedure. The first 450 trials were presented during a single hour-long session and 450 more 
trials were presented in a second session approximately 24 hours after the first session. The 
post-session interview protocol was adjusted to ask participant how the importance of each 
dimension varied between categories (e.g., Hilliness could be highly important for recognizing 
trials belonging to Alpha while Weather could be more important in identifying Charlie trials). 
With this information from the participants, we could attempt to infer the strategy being used 
on each trial to determine what response was selected. 

Explicit strategies were compared to actual choice behavior during the second session on a 
trial-by-trial basis. Using this comparison between verbally reported strategies and participants’ 
choice behavior, subsets of trials were established: behavior consistent with reported 
strategies, behavior inconsistent with reported strategies, or behavior unaccounted for by 
reported strategies. Using this assessment, we determined the percentage of total trials 
belonging to each subset, as well as decision-making accuracy within each subset. 

 
Results. Participants’ performance (Figure 2.7) on the final block was 77% correct (SD 16%), 
significantly above chance, t(32) = 16, p < 0.001 and reliably higher than the first block (M = 
51.6%, SD = 12%), t(32) = 11.5, p < 0.001. Participants were reliably more accurate on trials that 
contained the probabilistic auditory cues, F(2, 96) = 4.877, p<0.01  Interview responses 
revealed that some participants exhibited explicit awareness of the auditory cues. Excluding 
these ten participants from the data set revealed no differences in learning between cue 
conditions (F(2, 66) = 0.113, p=0.893),  indicated little to no implicit acquisition of the auditory 
cues on overall task performance. 
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Using the newly expanded post-training 
interview protocol, we developed a novel 
method for characterizing the consistency 
of participants’ performance with their 
post-session descriptions of their strategies 
(Figure 2.9).  The dimensions given the 
highest importance rating by each 
participant were used in an algorithm to 
determine what category label would be 
applied to each stimulus if they 
meticulously followed the rules they 
described.  This algorithmic approach was 
used to classify all the trials completed in 
the second day of learning, when their 
strategies should have been more 
consistent and stable, for the participants 
who did not report explicitly using the 
auditory cues (n=23).  After classifying each 
answer given as either consistent with, 
inconsistent with, or unaccounted for by the 
reported explicit strategies, the accuracy of 
each of these types of responses was measured.  On average 63% (SD 18%) of the participants’ 
day 2 responses were consistent with the verbal strategies extracted from the post-experiment 

Figure 2.8: Overall and category accuracy in Experiment 5.1. 900 total trials were used in this task. 
Percent correct was determined by measuring performance across blocks of 75 trials. 450 trials were 
presented during a single session. Two sessions occurred approximately 24 hours apart. Participants 
showed learning over the course of the task. Participants showed similar levels of performance across 
all three categories. Overall performance was greater than chance (33%, represented by the dotted 

     
 

Figure 2.9: Algorithmic assessment was used to 
compare participants’ choice behavior with reported 
strategies. This comparison was made on a trial-by-trial 
basis for second session trials. Trials were divided into 
subsets based on whether choice behavior was 
consistent with reported rules, inconsistent with 
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interview.  Of the other responses, 23% (SD 13%) were inconsistent and 13% (SD 12.5%) had no 
rule that applied to the stimulus.  Accuracy (Figure 2.10) was high for the rule-consistent trials 
and poor for the rule-inconsistent trials (M = 41%, SD = 26%) indicating that the rules reported 
were generally fairly accurate. On the subset of trials in which no rule could account for 
behavior, participants still showed greater choice accuracy in the subset of trials in which no 
rule could account for behavior (M = 67%, SD = 27%), exceeding chance, t(22) = 5.88, p < 0.001.  
These trials may reflect instances when the participants’ abandoned or were unable to correctly 
apply their explicit rules but relied on a more intuitive hunch to make their response. 

Discussion. Adding a second day of training with an additional 450 trials and a 24-hour 
consolidation period to the protocol did not appear to enhance implicit learning of the auditory 
cues.  However, the additional performance data from the second day allowed for an analysis 
of participants’ choice behavior contrasted with their verbally reported strategies.  While the 
major proportion of their categorization responses appeared to depend on their explicit 
strategy, a notable subset of trials were identified in which participants either could not apply 
these rules or did not follow their own rules, but on these trials they still selected the correct 
category at better than chance rates.  Success on these trials may have reflecting application of 
implicitly learned category information applied in a more intuitive way (i.e., not available to 
report after the session).  Overall, the learning process on this task may reflect a complex 
combination of both explicitly learning and implicitly acquired category information.  The 
challenge in designing a protocol to assess intuition use is to be better able to separate the 
impact of each of these types of knowledge and to be able to separately quantitatively estimate 
the effect sizes. 

For Experiment 6, we attempted to encourage more use of implicit knowledge by a method of 
gradual occlusion of the visual features hypothesizing that this would lead to greater reliance 
on the probabilistic auditory (bird call) cues. 

 
2.6 Experiment 6 
To encourage more reliance on the auditory cues, we gradually reduced the visibility of the 
visual information over the course of training, making these parameters less available for the 
explicit strategies being developed by participants.  Within the stimulus generation software, 
this was done using the weather and time of day parameters, using increasingly greater levels 
of weather cover and selecting times later in the day (reducing light).  As these parameters 
could no longer be relevant to the category membership, we reconstructed the category 
prototypes using just the hills and vegetation parameters.  The auditory cues probabilistically 
predicted the correct category label at the same rates as previous experiments. 
 
Participants. Seven participants were recruited from the NU community and paid $15/hr for 
participation. 
 
Materials. For this protocol, we created new category prototype values involving only two 
visual dimensions (topology and vegetation). The prototype values for the three categories 
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were (in order of hilliness, then vegetation; [0-1]): Alpha (0.981, 0.697), Bravo (0.508, 0.538), 
Charlie (0.449, 0.392). 
 
Procedure. Over the course of the task, occlusion increased steadily with each trial. Participants 
completed a single session of 450 trials. For this experiment, a short-open ended interview 
similar to the one used in Experiment 1 was administered in order to assess participants’ 
general experience with the task. 
 
Results. Participants’ performance (Figure 2.11, Left Panel) on the final block (M = 57.14%, SD = 
13.33%) was significantly above chance, t(6) = 4.72, p < 0.01. However, unlike in previous 
experiments, performance on the final block did not improve significantly compared to the first 
block (M = 45.71%, SD = 12.82%),  t(6) = 1.62, p = 0.16. Participants showed no difference in 
performance across auditory cue conditions, F(2, 18) = 0.009, p=0.991, indicating they were not 
effectively encouraged to rely on the auditory cues as a result of the occlusion (Figure2.11, 
Right Panel). No participants reported explicitly learning to rely on the auditory cues.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Discussion. Participants showed little overall learning over the course of the task, indicating 
that occluding the visual dimensions and/or reducing the number of category-relevant 
dimension values interfered with participants’ ability to learn the underlying category structure. 
In Experiment 7, the occlusion method was adjusted in an attempt to allow for better learning 
of the categories. 
 
2.7 Experiment 7  
For Experiment 7, occlusion increased gradually with sets of trials, as opposed to each trial, and 
the gradient was increased in order to make the occlusion more salient at the end of the 
training protocol.  In addition, non-occluded trials were included on a subset of trials towards 
the end of the protocol to verify that participants had learned and still remembered the key 
visual features predictive of category membership. 
 
Participants. Seven participants were recruited from the NU community and paid $15/hr for 
participation. 
 

Figure 2.11. (Left) Overall and category accuracy in Experiment 7. Visual dimensions were gradually 
occluded during the task on a trial-by-trial basis. Overall performance was greater than chance (33%, 
represented by the dotted line) during the final block but did not improve over the course of the task. 
(Right) Performance did not differ across auditory cue conditions, even when the visual features were 
occluded. 
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Materials. New prototype values were generated for Charlie (0.882, 0.207) in order to balance 
category discriminability.  The Alpha and Bravo categories were the same as Experiment 6. 
 
Procedure. We altered the occlusion gradient so that occlusion went from non-occluded early 
in learning to more substantial visual cover by the end and the occlusion levels changed over 
sets of trials rather than individual trials. Trials -1-150, were not occluded at all to allow for 
learning of the visual categories, trials 151-200 was somewhat occluded, and trials 201-450 
were maximally occluded but 20% of trials (randomly interspersed) in this subset were non-
occluded to assess knowledge of the visual category parameters later in learning. A short, open-
ended interview was once again administered in order to assess participants’ general 
experience with the task. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Results. Participants’ performance (Figure 2.12) on the final block was 54% correct (SD=17%), 
significantly above chance, t(6) = 3.92, p < 0.05. Performance on the final block was not 
significantly better than the first block (M = 45%, SD = 11%), t(6) = 1.49, p = 0.19. Post-session 
interviews revealed that all participants explicitly learned, or were at least attentive to, the 
auditory cues, underlying the small differences between cue conditions (F(2, 18) = 2.842, 
p=0.085).  
 
Discussion. Because all participants relied on explicit strategies involving auditory cues during 
the task, we could not assess the role of implicit learning of the auditory cues in Experiment 7. 
In addition, participants still showed low levels of overall learning, indicating that the occlusion 
paradigm did not encourage implicit learning of the auditory cues and instead reduced the 
overall difficulty of the task. 
 
 

Figure 2.12. (Left) Overall and category accuracy in Experiment 7. Visual dimensions were non-occluded 
from trials 1-150, moderately occluded during from trials 151-200, and maximally occluded from trials 
201-450. Overall performance was greater than chance (33%, represented by the dotted line) during the 
final block but did not improve over the course of the task. (Right) Performance was strongly affected by 
the auditory cue condition, but all participants explicitly mentioned using auditory cues in verbal reports 
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2.8 General Discussion 
Across experiments, participants generally showed reliable learning of complex categories 
based on four underlying parameters that determined the visual characteristics of procedurally 
generated terrain stimuli.  This learning was accomplished by participants without any 
information about the underlying category structure being provided explicitly.  All task learning 
was done through trial-and-error with feedback, providing participants with the opportunity to 
both explicitly discover categorization strategies or gradually build up implicit knowledge of the 
task.  With this approach, we were able to successfully develop a new laboratory learning task 
that used stimuli related to operationally-relevant training.  In this new protocol, we were able 
to characterize both the rate of learning and develop methodological tools for quantifying the 
explicit task strategies learned by participants during the training session. 

The Terrain Categorization task developed here improves on current techniques for laboratory 
studies of category learning by using more relevant, complex stimuli, but still maintaining a 
well-controlled underlying mathematical structure.  Critical to the task development was the 
interdisciplinary effort with our collaborators at Charles River Analytics to bring sophisticated 
technological solutions to procedural content generation (the stimulus generation software) 
together with modern cognitive neuroscience-based scientific approaches.  Well-controlled 
experimental conditions can be successfully combined with operationally-relevant content 
domains to support quantitative measures of learning. 

Our ability to measure robust implicit learning on the new category learning task during the 
first 1-2 hours of training was not as effective as hoped.  The complexity of the task allowed for 
substantial explicit learning that tended to be the main driver of decision-making performance.  
Expert intuition outside the laboratory is typically expected to develop of many hours (even 
months or years) of experience.  While implicit learning paradigms are often able to identify 
measurable signals of the beginning of this process within short laboratory sessions of only an 
hour or two, this may depend on the peculiar and artificial nature of the stimuli used in those 
experiments.  In general, the stimuli used in implicit learning studies are unfamiliar and this is 
used to help hide the underlying statistical structure of the task from explicit discovery.  
However, even within the literature of experimental studies of implicit learning, the challenge 
of reducing explicit discovery by undergraduate participants is a long-standing one 
(Destrebecqz & Cleermans, 2001; Reber 2013). 

Three approaches were tested here to attempt to quantify robust contributions from implicit 
learning on the Terrain Categorization task.  First, we carried out extended post-learning 
interviews to characterize the amount of explicit task knowledge discovered by participants 
during learning.  In some prior research, the discrepancy between performance and reportable 
knowledge indicates a robust effect of implicit learning (e.g., A.S. Reber, 1967).  Second, we 
embedded additional, probabilistic information into the auditory aspect of the stimuli. Because 
the focus of explicit discovery was on the visual features the lack of attention directed to the 
auditory cues might have allowed more influence from implicit learning (Voss & Paller, 2009).  
In addition, probabilistic stimuli have been found to produce better implicit learning by making 
explicit discovery less likely (Song, Howard & Howard, 2007).  However, participants continued 
to primarily rely on explicit strategies for learning the terrain categories.  Because implicit and 
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explicit learning approaches are often found to operate competitively (Ashby et al. 1998; 
Poldrack & Packard, 2003; Nomura & Reber, 2012; Reuveni & Reber, in preparation) it may 
have been the case that any implicit learning that was occurring was masked or inhibited by the 
reliance on explicit knowledge.  Third, we attempted in Experiments 6 and 7 to use a gradual 
occlusion technique to shift participants from an explicit to more implicit strategies. This 
technique did not successfully discourage explicit learning but may still have some promise in 
paradigms with more extended training protocols. 

It is likely that quantification of the influence on implicit learning on intuitive decision making 
will require training protocols that extend for more hours than in the paradigms used here.  
Over tens of hours or more, participants will tend to automate learning and become more 
habitual in performance.  This form of learning depends on the same underlying neural 
mechanisms as implicit learning (Reber, 2013) and thus, we would expect to see increasingly 
rapid, effortless and intuitive cognitive processes with more training.  However, since implicit 
learning phenomena are often found to be highly specific to the task being practiced (inflexible 
in application; Sanchez, Yarnik & Reber, 2015), examination of implicit learning in longer 
domains should generally be undertaken with even more directly relevant skill domains.  Thus, 
our recommendation would be for future research characterizing the impact of implicit learning 
on skill development to be done directly using operationally relevant training domains, but 
using the methodological tools of laboratory studies of learning and memory. 
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This report summarizes a set of research studies supported by a Basic Research Challenge to examine how implicit 
learning research can be used to accelerate the development of expert intuition in training.  The foundational basic science 
approach to this work is that implicit learning (Reber, 2013) reflects a separate type of learning and memory which 
accumulates through experience outside of awareness and influences behavior through intuition.  The main goal of the 
research project described here is to examine how to take capitalize on these laboratory paradigms to accelerate the 
development of operationally relevant intuitive decision making in practical contexts.
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